Which role for nitric oxide in symbiotic N2-fixing nodules: toxic by-product or useful signaling/metabolic intermediate?
نویسندگان
چکیده
The interaction between legumes and rhizobia leads to the establishment of a symbiotic relationship characterized by the formation of new organs called nodules, in which bacteria have the ability to fix atmospheric nitrogen (N2) via the nitrogenase activity. Significant nitric oxide (NO) production was evidenced in the N2-fixing nodules suggesting that it may impact the symbiotic process. Indeed, NO was shown to be a potent inhibitor of nitrogenase activity and symbiotic N2 fixation. It has also been shown that NO production is increased in hypoxic nodules and this production was supposed to be linked - via a nitrate/NO respiration process - with improved capacity of the nodules to maintain their energy status under hypoxic conditions. Other data suggest that NO might be a developmental signal involved in the induction of nodule senescence. Hence, the questions were raised of the toxic effects versus signaling/metabolic functions of NO, and of the regulation of NO levels compatible with nitrogenase activity. The present review analyses the different roles of NO in functioning nodules, and discusses the role of plant and bacterial (flavo)hemoglobins in the control of NO level in nodules.
منابع مشابه
Nitric oxide: a multifaceted regulator of the nitrogen-fixing symbiosis.
The specific interaction between legumes and Rhizobium-type bacteria leads to the establishment of a symbiotic relationship characterized by the formation of new differentiated organs named nodules, which provide a niche for bacterial nitrogen (N2) fixation. In the nodules, bacteria differentiate into bacteroids with the ability to fix atmospheric N2 via nitrogenase activity. As nitrogenase is ...
متن کاملNitric oxide detoxification in the rhizobia-legume symbiosis.
NO (nitric oxide) is a signal molecule involved in diverse physiological processes in cells which can become very toxic under certain conditions determined by its rate of production and diffusion. Several studies have clearly shown the production of NO in early stages of rhizobia-legume symbiosis and in mature nodules. In functioning nodules, it has been demonstrated that NO, which has been rep...
متن کاملNitric Oxide Functions; an Emphasis on its Diversity in Infectious Diseases
Nitric oxide is a short-lived mediator, which can be induced in a variety of cell types and produces many physiologic and metabolic changes in target cells. It is important in many biological functions and generated from L-arginine by the enzyme nitric oxide synthase. Nitric oxide conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission and cytotoxici...
متن کاملEquilibrium between the "genuine mutualists" and "symbiotic cheaters" in the bacterial population co-evolving with plants in a facultative symbiosis.
The mathematical model for evolution of the plant-microbe facultative mutualistic interactions based on the partners' symbiotic feedbacks is constructed. Using the example of rhizobia-legume symbiosis, we addressed these feedbacks in terms of the metabolic (C<-->N) exchange resulting in the parallel improvements of the partners' fitness (positive feedbacks). These improvements are correlated to...
متن کاملPossible role of glutamine synthetase in the NO signaling response in root nodules by contributing to the antioxidant defenses
Nitric oxide (NO) is emerging as an important regulatory player in the Rhizobium-legume symbiosis. The occurrence of NO during several steps of the symbiotic interaction suggests an important, but yet unknown, signaling role of this molecule for root nodule formation and functioning. The identification of the molecular targets of NO is key for the assembly of the signal transduction cascade tha...
متن کامل